Loading...
#Publications "Publications"

Publications

 

Assessment

Auditory Evoked Potentials
Tactile Evoked Potentials
Motor Imagery

 

Communication

Auditory Evoked Potentials
Tactile Evoked Potentials
Motor Imagery

 

Guger, C., Spataro, R., Allison, B. Z., Heilinger, A., Ortner, R., Cho, W., & La Bella, V. (2017). Complete Locked-in and Locked-in patients: Command following assessment and communication with vibro-tactile P300 and motor imagery brain-computer interface tools. Frontiers in Neuroscience, 11, 251.

Ortner, R., Annen, J., von Oertzen, T., Espinosa, A., Rodriguez, J., Allison, B. Z., Edlinger, G., Laureys, S., Hamberger, M., Kammerhofer, A., Guttmann, F., Guger, C. (2016) BCIs for DOC Patients: Assessment, Communication, and New Directions. In International Conference on Universal Access in Human-Computer Interaction (pp. 62-71). Springer International Publishing.

Annen, J., Ortner, R., Wannez, S., Piarulli, A., Allison, B. Z., Guger, C., & Laureys, S.: MindBEAGLE: An EEG-based BCI developed for patients with disorders of consciousness. Conference Paper: International Brain-Computer Interface (BCI) Meeting 2016

Lugo ZR, Quitadamo L, Bianchi L, Pellas F, Veser S, Lesenfants D, Real RG, Herbert C, Guger C, Kotchoubey B, Mattia D, Laureys S, Kübler A and Noirhomme Q (2016). Cognitive processing in non-communicative patients: what can event-related potentials tell us? Front. Hum. Neurosci. 10: 569. doi: 10.3389/fnhum.2016.00569

Gibson, R.M., Chennu, S., Fernández‐Espejo, D., Naci, L., Owen, A.M. and Cruse, D., 2016. Somatosensory attention identifies both overt and covert awareness in disorders of consciousness. Annals of neurology, 80(3), pp. 412-423.

C. Guger, C. Kapeller, R. Ortner, K. Kamada, Motor Imagery with Brain-Computer Interface Neurotechnology (pp. 61-79), in: Motor Imagery: Emerging Practices, Role in Physical Therapy and Clinical Implications, edited by B.M Garcia, 2015. 

Espinosa, Z.R. Lugo, J. Rodriguez, R. Ortner, Q. Noirhomme, S. Laureys, C. Guger (2013): Brain computer interface based on vibrotactile stimulation. . In the Journal of Neurology. Volume 260. Supplement 1. June 2013. P. 92. Springer Medizin. DOI 10.1007/s00415-013-6924-0. Poster at the 23rd Meeting of the European Neurological Society. June 8 – 11, 2013. Barcelona, ES.

Z. R. Lugo; J. Rodriguez, A. Lechner. R. Ortner; I. S. Gantner; A. Kübler, S. Laureys, Q. Noirhomme, C. Guger (2013): A vibrotactile P300-based BCI for consciousness detection and communication. In Clin EEG and Neurosci, 2013.

R. Ortner, A. Lechner, C. Guger (2013): Bewusstseinsdetektion mittels P300 . In proceedings of 57. Jahrestagung der Deutschen Gesellschaft für klinische Neurophysiologie und funktionelle Bildgebung. Leipzig, DE.

R. Ortner, Z. Lugo, R. Prückl, C. Hintermüller, Q. Noirhomme, C. Guger (2013): Performance of a tactile P300 speller for healthy people and severely disabled patients. In proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’13). July, 3-7 2013. Osaka, JP.

Guger, Z. Lugo, Q. Noirhomme, R. Ortner, G. Edlinger, A. Espinosa, J. Rodriguez, S. Laureys (2013): Brain-computer interfaces for assessment and communication in patients with disorders of consciousness.  In Proceedings of Neuroscience 2013. November 09 – 13, 2013. San Diego, Ca, US.

NewScientist article by Clare Wilson "Portable mind-reader gives voice to locked-in people", http://www.newscientist.com/article/mg22530063.800-portable-mindreader-gives-voice-to-lockedin-people.html.

P. Horki, G. Bauernfeind, D. S. Klobassa, C. Pokorny, G. Pichler, W. Schippinger, and G. Mueller-Putz, “Detection of mental imagery and attempted movements in patients with disorders of consciousness using EEG,” Name: Frontiers in Human Neuroscience, vol. 8, p. 1009, 2014.

D. Lulé, Q. Noirhomme, S. C. Kleih, Camille Chatelle, S. Halder, A. Demertzi, Marie-Aurélie Bruno, O. Gosseries, A. Vanhaudenhuyse, Caroline Schnakers, M. Thonnard, A. Soddu, A. Kübler, and S. Laureys, “Probing command following in patients with disorders of consciousness using a brain–computer interface,” Clinical Neurophysiology, vol. 124, pp. 101–106, 2013.

C. Chatelle, S. Chennu, Q. Noirhomme, D. Cruse, A. M. Owen, and S. Laureys, “Brain-computer interfacing in disorders of consciousness,” Brain injury, vol. 26, no. 12, pp. 1510–1522, 2012.

M. M. Monti, A. Vanhaudenhuyse, M. R. Coleman, M. Boly, J. D. Pickard, L. Tshibanda, A. M. Owen, and S. Laureys, “Willful modulation of brain activity in disorders of consciousness,” New England Journal of Medicine, vol. 362, no. 7, pp. 579–589, 2010.

#Measurement-Results "Measurement Results"

Measurement Results

 

P300 Results

mindBEAGLE automatically creates event-related potentials (ERPs) from the EEG data from each run (top right corner). The user can select the channel shown in this window by clicking on the corresponding position on the brain on the left side. The green line represents the averaged ERPs elicited by target stimuli, while the blue line shows the ERPs resulting from nontarget stimuli. The shaded green areas in the averaged plot mark the periods with a significant difference between the two lines.

The colored brain map in the left (Auditory P300 experiment) also shows the distribution of peak amplitude of the target stimuli, with green as the highest value and blue as the lowest value. The control accuracy could be seen in the bottom right plot. The plot evaluates how many stimuli need to be taken into account to reach a certain level of control accuracy. In these example, the control accuracy reached 100 after about 4 stimuli (auditory) and 100 after about 11 stimuli (vibrotactile).

 

Fig 01
Figure 1: Auditory P300 experiment
Fig 02
Figure 2: Vibrotactile P300 experiment

Motor imagery results

Figure 3 presens different analyses from the motor imagery sessions. The four rectangular plots (called ERDS plots) in the top left show the activation and deactivation of motor neurons during motor imagery. The activation is shown for two different positions, one on the left (C3) and one on the right side (C4) of the brain. Two plots are shown for each electrode site. The two upper plots represent the imagination of right hand motor movements, and the two lower plots show left hand motor imagination. The x-axis represents the time during imagination, the y-axis show different frequency bands from 8Hz to 30Hz. A blue color indicates deactivation of motor neurons, and red color reflects activation.

The two colored brains to the right of the result plots show the spatial distribution of neural activations.

The accuracy plot on the bottom displays the control accuracy, averaged over all motor imaginations, within one session. The blue line represents the averaged control accuracy from all of the patients’ runs with right hand movement imagination, and the yellow like reflects left hand imagination. The green line presents the average accuracy from both hands.

MotorImagery Fig3
Figure 3: Analyses from different motor imagery sessions
#Advisory-Board "Advisory-Board"

Advisory Board

The mission is to test objectively if the patient can understand conversations and to provide a system for communication with DOC and LIS patients.
 

Image

Brendan Allison, PhD

University of California, San Diego, US

 

Image

Prof. Marzia de Lucia, PhD

Laboratoirse de Recherche en Neuroimagerie (LREN)

 

Image

Kyosuke Kamada, MD, PhD

Asahikawa Medical University, Japan

 

Image

Prof. Steven Laureys, MD, PhD

Coma Science Group, Liége University Hospital, Belgium

 

Image

Eloy Opisso, PhD

The Guttmann Institute, Barcelona, Spain

 

Image

Gerwin Schalk, PhD

Albany Medical Center and Wadsworth Research Center, Albany, US

 

Image

Prof. Marian Poboroniuc, PhD

Technical University of Iasi, Romania

 

Image

Rossella Spataro, MD, PhD

University of Palermo, Italy